

Implement a soft delete with Hibernate

www.thoughts-on-java.org

How to implement a soft delete with Hibernate
To implement a soft delete with Hibernate, you have to:

1. tell Hibernate to perform a SQL UPDATE instead of a DELETE
operation and

2. exclude all “deleted” records from your query results.

Update the record instead of deleting it
To implement a soft delete, you need to override Hibernate’s default
remove operation. You can do that with an @SQLDelete annotation.
This annotation allows you to define a custom, native SQL query that
Hibernate will execute when you delete the entity. You can see an
example of it in the following code snippet.

That is all you need to do to create a basic soft delete
implementation. But there are 2 other things you need to handle:

1. When you delete an Account entity, Hibernate doesn’t update
the value of its state attribute in the current session.

2. You need to adapt all queries to exclude the deleted entities.

@Entity

@SQLDelete(

sql = “UPDATE account SET state = ‘DELETED’

WHERE id = ?”,

check = ResultCheckStyle.COUNT)

public class Account { … }

http://www.thoughts-on-java.org/

Implement a soft delete with Hibernate

www.thoughts-on-java.org

Update state property in current session
Hibernate doesn’t parse the native query you provide to the
@SQLDelete annotation. It just sets the values of the bind parameters
and executes it. It, therefore, doesn’t know that you provided an SQL
UPDATE statement instead of a DELETE statement to the
@SQLDelete annotation. It also doesn’t know that the value of the
state property is outdated after it performed the delete operation.

If your code might use the entity object after it got deleted, you need
to update the state property yourself. The easiest way to do that is to
use a lifecycle callback, as I do in the following code snippet. The
@PreRemove annotation on the deleteUser method tells Hibernate to
call this method before it performs the remove operation. I use it to
set the value of the state property to DELETED.

@Entity

@SQLDelete(

sql = “UPDATE account SET state = ‘DELETED’

WHERE id = ?”,

check = ResultCheckStyle.COUNT)

public class Account {

…

@PreRemove

public void deleteUser() {

this.state = AccountState.DELETED;

}

}

http://www.thoughts-on-java.org/

Implement a soft delete with Hibernate

www.thoughts-on-java.org

Exclude “deleted” entities in queries
Hibernate’s @Where annotation allows you to define an SQL snippet
which Hibernate adds to the WHERE clause of all queries. The
following code snippet shows a @Where annotation that excludes a
record if its state is DELETED.

As you can see in the following code snippets, Hibernate adds the
defined WHERE clause when you perform a JPQL query or call the
EntityManager.find method.

@Entity

@SQLDelete(

sql = “UPDATE account SET state = ‘DELETED’

WHERE id = ?”,

check = ResultCheckStyle.COUNT)

@Where(clause = “state <> ‘DELETED'”)

public class Account { … }

Account a = em.find(Account.class, a.getId());

16:07:59,511 DEBUG SQL:92 – select account0_.id as

id1_0_0_, account0_.name as name2_0_0_, account0_.state

as state3_0_0_ from Account account0_ where

account0_.id=? and (account0_.state <> ‘DELETED’)

http://www.thoughts-on-java.org/

